Tree-like Dimensionality Reduction for Cancer-informatics
نویسندگان
چکیده
منابع مشابه
Dimensionality Reduction for Tracking
We have been applying dimensionality reduction techniques to a variety of tracking problems. We have experimented with tracking the articulated pose of humans from video imagery, the trajectory of RFID tags from signal strength measurements, the trajectory of acoustic beacons in sensor networks, and the location of wireless device from 802.11 signal measurements. In each case, an analytic relat...
متن کاملUsing PCA and Factor Analysis for Dimensionality Reduction of Bio-informatics Data
Large volume of Genomics data is produced on daily basis due to the advancement in sequencing technology. This data is of no value if it is not properly analysed. Different kinds of analytics are required to extract useful information from this raw data. Classification, Prediction, Clustering and Pattern Extraction are useful techniques of data mining. These techniques require appropriate selec...
متن کاملDimensionality Reduction
Dimensionality reduction studies methods that effectively reduce data dimensionality for efficient data processing tasks such as pattern recognition, machine learning, text retrieval, and data mining. We introduce the field of dimensionality reduction by dividing it into two parts: feature extraction and feature selection. Feature extraction creates new features resulting from the combination o...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملSpectral Methods for Dimensionality Reduction
How can we search for low dimensional structure in high dimensional data? If the data is mainly confined to a low dimensional subspace, then simple linear methods can be used to discover the subspace and estimate its dimensionality. More generally, though, if the data lies on (or near) a low dimensional submanifold, then its structure may be highly nonlinear, and linear methods are bound to fai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2019
ISSN: 1757-899X
DOI: 10.1088/1757-899x/490/4/042028